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ABSTRACT: A general [4 + 1] cyclization reaction of " -
carbonyl nucleophiles with 2-iodomethylallyl peroxides, which 0 R~ Base R’&g
function as unique electrophilic oxygen synthons, for the R‘)\/Rz * )\ /Bu @1 -
5 : . S — o-0 et s/
synthesis of a broad range of 2,2-disubstituted tetrahydrofur- b i@ 5© cyciization i
ans is achieved under operationally simple conditions. The "
O electrophilic oxygen synthons O asymmetric synthesis, >20:1 dr

unprecedented asymmetric version of such reaction is also
reallzed via chu'a.l auxiliary—assisted cycljzation, thus providing O broad scope, 45 examples, 61-96% yield O metal-free, moisture tolerance
a distinct approach to access chiral tetrahydrofurans with high

diastereoselectivities. The new method can be applied to the synthesis of core structure of posaconazole drug.

etrahydrofurans are a class of fundamentally important Scheme 1. Background and Our Synthetic Strategy
heterocycles widely found in numerous blologlcally (a) Previous strategies: cyclization involving C-O bond formation via nucleophilic oxygen
important natural products and drug molecules (Figure 1).'
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One-step synthesis: tandem C-C and C-O bond formations
Asymmetric synthesis: chiral auxiliary-assisted cyclization

Among those synthetic methods established,” cycloaddition
reactions provide an attractive and powerful strategy for the
one-step synthesis of these compounds.”” To date, such a
cyclization strategy predominantly focuses on the [3 + 2]
processes,” > such as the transition-metal- or Lems-acxd-
catalyzed cycloaddmcn reactions of carbonyl ylides,® cyclo-
propanes,” and trimethylenemethane® (Scheme 1a, paths a and
b). As an alternative strategy, [4 + 1] cyclization reactions,
however, have been far less investigated.”” Currently, a few
isolated examples including transition-metal-catalyzed metal-
locarbene O—H insertion—Michael addition, O—H insertion—
aldol, and O—H insertion—Conia-ene cascades have been

ment of new [4 + 1] cyclization reactions remains an unmet
challenge.

Herein we describe a highly efficient formal [4 + 1]
cyclization reaction, a tandem C—C and C—O bond-forming
process wherein the C—O bond is constructed via an
unconventional electrophilic alkoxylation strategy, for the
synthesis of a wide range of functionalized 2,2-disubstituted
tetrahydrofurans from various carbonyl nucleophiles 2 and
bifunctional 2-iodomethylallyl peroxides 3 in a single step.

reported by Hu,”™ Moody,” Hatakeyama,* and Sharma,®" Received: June 12, 2019
respectively (Scheme 1la, path c). Accordingly, the develop- Published: July S, 2019
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A General and Practical Synthesis of Chiral 1,2-Oxazetidines

Jinggang Yang*," Binyu Wu*,"” and Lin Hu**"

(a) small
4 R Hi]
Abstract: 1,2-Oxazetidines are valuable small strained i o 0
molecules that could be used to create new and conven- strain energy (kealimol):  : 229 252 :
synthetic approaches: | well p rarely g :

tionally difficult-to-access chemical transformations. Cur-
rently, asymmetric methods towards this class of hetero-
cycles are very rare. Herein, we report a general and
practical method to access a series of structurally diverse
chiral 1,2-oxazetidines from readily available chiral epoxides
and o-bromo esters in 3-4 steps by using mild Mitsunobu
reactions as an efficient ring-closure approach to form the
highly strained four-membered rings. The new method is
operationally simple, and a range of N-nosyl-protected 3-
and 4-substituted as well as 3,4-disubstituted chiral 1,2-
oxazetidines could be conveniently prepared in gram-scale
with excellent enantioselectivities (93-99% ee) and good
overall yields for the first time. )

Recently, 1,2-oxazetidines, a class of N,O-containing four-
membered ring heterocycles, have attracted the attention from
the synthetic community owning to their unique ring strained
property'’ (25.2 kcal/mol, Scheme 1a). The intrinsic high energy
stored in these small strained compounds could be harnessed
to create new and conventionally difficult-to-access chemical
transformations.” For example, Bode’s group™ utilized the N-
Fmoc-protected 1,2-oxazetidine amino acid as unique serine-
forming ligation reagent to synthesize the complex peptides
(up to 100 residues) that are inaccessible from native chemical
ligation reactions of thioesters. Also, in 2015, Orentas and co-
workers™ reported the N-tosyl or Boc-protected 1,2-oxazeti-
dines could function as unusual electrophilic oxygen sources to
react with aryl organometallic reagent to form ethers via
distinct bond disconnections. More recently, Loh and co-
workers?! demonstrated that N-tosyl-protected 1,2-oxazetidine
was able to participate the cobalt-catalyzed N—O and C—-C
bonds cleavage reactions with heteroarenes to afford series of
ortho-selective aminomethylated and hydroxymethylated prod-
ucts. These prominent examples reveal the synthetic values of

[a] J. Yang,” B. Wu," Prof. Dr. L. Hu
Chongging Key Laboratory of Natural Product Synthesis and Drug Research
School of Pharmaceutical Sciences
Chongging University, Chongging 401331 (China)
E-mail: Ihu@cqu.edu.cn

[b] Prof.Dr. L. Hu
Guangdong Provincial Key Lab of Nano-Micro Material Research
School of Chemical Biology and Biotechnology
Peking University
Shenzhen Graduate School
Shenzhen 518055 (China)

["] These authors contributed equally to this work.

E Supporting information for this article is available on the WWW under

https://doi.org/10.1002/ajoc.201900754

Asian J. Org. Chem. 2020, 9, 197-201  Wiley Online Library

(b) reported asymmetric synthesis:

cl \ JBu
Ny ¢ e DAL %ﬁ o
=3 ) =N*_ - o7 VAT ‘
x,o A O e H;CHH ! Florio (2003, 2006): |
. . specific substrates ;
2 H '
98" fBu spii RUF oy Y rigorous condiions |
RSN, - N S99 MNe L g
1 o o . HO
R PH Ar
- PG j--mmmmmmememees 1
4 OH PhsP, DIAD g ¢ | Yamamoto (2014): ;
Et(E)gd M!ﬁﬂ\ THF, rt E[O'E" N only three examplesi
R Ef Me R LIS |
PG =Boc; R=Me, Bn or PG=Cbz; R=Et
_OH
N Fmoc ]
] 11steps QO-N . Bode (2015):
+ 7 ots - | '
(o) —_— B single example .
COMH oo :
MeQ' OMe
(c) this work:
X Ns Ns
R R?\'rcgzme Boc-NH-OH o . o
o) & 3-4 steps I_k <) 1
L LoD _T gram-scale R R?
amino acids 28 examples, 93-99% ee R, R? = alkyl or aryl

O First general

PP O Highly O simple and practical synthesis

Scheme 1. Background and our research synopsis.

1,2-oxazetidines in chemical synthesis. However, the synthetic
potentials of such heterocyclic reagents have not been fully
exploited to date. One major reason is due to the limited
synthetic approaches currently available towards these
heterocycles.”™

On the other hand, chiral 1,2-oxazetidines are synthetically
more valuable, as they can be used for the construction of
biologically important chiral N,O-containing scaffolds. Surpris-
ingly, compared to the three-membered analogue
oxaziridines,” asymmetric synthetic approaches towards chiral
substituted four-membered 1,2-oxazetidines are even rare.
Currently, only few isolated examples for the synthesis of
substituted chiral 1,2-oxazetidines have been reported. In 2003,
Florio and co-workers reported the first asymmetric synthesis of
chiral 1,2-oxazetidines via the addition of chiral a-lithiated 2-(1-
choloroethyl)-2-oxazolines to nitrones.* In 2006, the same
group also accomplished the asymmetric synthesis of chiral 4-
hydroxyalkyl-1,2-oxazetidines via the similar addition reactions
of a-lithiated aryloxiranes with nitrones.”” However, both of
these two reactions were limited to the preparation of the
specific N-tert-butyl 1,2-oxazetidine products, and the stereo-
selectivities of the reactions were highly depended on the

197 © 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim



In conclusion, We have succesfully developed two general
synthetic routes for the facile synthesis of a series of chiral
substituted 1,2-oxazetidines from readily available chiral epox-
ides and a-bromo esters, both of which in turn could be readily
prepared from the inexpensive chiral amino acids. Relying on
the Mitsunobu reactions as a mild and powerful cyclization
approach to form the strained four-membered rings, a range of
structurally diverse N-nosyl-protected 3-substituted, 4-substi-
tuted, and 3,4-disubstituted chiral 1,2-oxazetidines could be
efficiently synthesized in gram-scale with high enantioselectiv-
ities (93-99% ee) and satisfactory overall yields in 3-4 steps for
the first time. The new method addresses the long-standing
synthetic issues of chiral 1,2-oxazetidines and will thus facilliate
their synthtic potentials in chemical synthesis. Utilization of
such small strained heterocycles as unique synthons for the
discovery of new chemical reactions is currently undergoing in
our lab and the relevant investigation results will be reported in
due course.

Experimental Section

Experimental details could be found in Supporting Information.
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